Diversity protects predator-prey interactions

Cod are a less important predator as bottom temperatures (SBT) warm.

New paper just out online in Global Change Biology, led by postdoc Becca Selden: functional diversity among predatory fish helps protect ecosystems from the impacts of warming. Becca showed that warming has helped make Atlantic cod a much less important predator in the Northeast U.S., but other predators (spiny dogfish, hakes) have expanded to fill its role.

On a geeky note, what’s especially interesting is that these changes in predator-prey interactions with warming are occurring even though both predators and prey are shifting their distributions as the environment changes.

Cod photo by Joachim S. Müller.
Photo by Joachim S. Müller.

Species numbers going UP in the coastal ocean

Ryan just published a paper in Ecology Letters showing that the number of species in many parts of the coastal ocean is going up, not down as many would expect.  He spent the past few years trying to understand how marine biodiversity is changing, but his findings were initially so surprising that he doubted them.

Globally, biodiversity is going down. But because some species have started to live in more places, and different places, what happens globally isn’t what we see locally.

He studied decades of patterns in biodiversity around the North American coastline, and surprisingly, most of these regions show *increases* in the number of species present. At the same time, He found that organisms that were previously rare in these areas are becoming increasingly common.

The natural world is full of surprises.

Welcome Allison Dedrick and Joyce Ong

Allison Dedrick and Joyce Ong have just joined the lab as postdocs, and we’re excited to have them here! Allison is coming from a Ph.D. with Marissa Baskett and Loo Botsford at UC Davis, and Joyce just finished her Ph.D. with Mark Meekan at U. Western Australia. They will be working on reef fish metapopulation dynamics (Allison) and synchrony in marine population dynamics (Joyce).

Allison Dedrick
Joyce Ong

New papers from the lab

Exciting news on the publication front:

  • Jim’s paper on rapid responses of marine animals to winter temperature variability is now out in Global Change Biology. He found strong variation in how animals responded to a warm winter (higher or lower abundance; or shift north vs. south), but the rate and direction of response was predictable from thermal affinity.
  • Ryan has been hard at work to understand long-term trends in species richness in marine ecosystems all around North America. The paper was just accepted in Ecology Letters! More on this later.
  • Jordan Holtswarth was an REU student in our lab last summer, and her paper on reproduction in clownfish is now in press at Bulletin of Marine Science!

Field season in the Philippines

It is May, and we have a larger-than-usual team this year headed to Visayas State University in the Philippines to continue our research on metapopulation dynamics in coral reef fish. Michelle is leading the tagging and sample collection, Katrina is trying new oceanographic measurement sand field experiments, Allison is getting her first introduction to the system in preparation for modeling efforts, and Malin is helping out all around and catching fish (thanks to training from Tony Nahacky last year). We also have the indispensable help of local assistants Gerry Sucano and Rodney Silvano, plus Apollo Lizano (visiting student from U. Philippines Marine Science Institute). It’s great to be in the water again!

Jim @ Fisheries Leadership & Sustainability Forum

Postdoc Jim Morley is just back from presenting and participating in the latest Fisheries Forum in Monterey, CA earlier this week. The topic was “Managing Fisheries in a Changing Environment,” and participants included Fisheries Management Council members, staff, NOAA employees, and many state agency employees. Lots of interest in how to adapt to the rapidly changing ocean conditions that we are seeing. Jim talked about how OceanAdapt and the species distribution projections we are developing can help.

Hiring a data science technician for coral reef research!

Data Science Technician

The Pinsky Lab in the Department of Ecology, Evolution, and Natural Resources is searching for an organized, enthusiastic, and skilled individual to work as a data science technician on a three-year project modeling the future of coral reefs and the potential for evolutionary rescue. The project is in collaboration with the Coral Reef Alliance, Dr. Daniel Schindler at the University of Washington, and other collaborators. The project is funded by the Gordon and Betty Moore Foundation.

The technician will assist the PI, a postdoc, and our collaborators by identifying, assembling, and synthesizing existing, region-specific data on coral reefs and their oceanography, ecological communities, population dynamics, evolutionary parameters, and climate in the Pacific and Caribbean. These data will contribute to regional and/or global models of coral adaptation and the potential for conservation over the coming centuries across realistically complex landscapes. Important questions to be studied include the relative role of ecological vs. evolutionary change in rapid coral adaptation, the interaction between oceanography and evolutionary processes, and the potential for conservation actions to facilitate rapid adaptation. Other duties will include assisting with data visualizations as well as project and lab logistics such as training students, preparing materials for grant reports and applications, maintaining a website, and organizing events.

The technician will be part of a dynamic research team with opportunities for professional development, presentations, co-authorship on scientific manuscripts, and collaboration with colleagues at Rutgers, U. Washington, the Coral Reef Alliance, and beyond. Rutgers offers many opportunities to interact with biologists, oceanographers, climate scientists, and other scholars in the School of Environmental and Biological Sciences, the Rutgers Climate Institute, the Institute for Earth, Ocean, and Atmospheric Sciences, and the many other institutions in the New York region.

Minimum Qualifications
– A bachelor’s degree in ecology & evolution, marine biology, oceanography, climate, or a related scientific field, or an equivalent combination of education and relevant experience
– Exceptional organizational and data management skills
– Strong ability to accomplish tasks independently
– Excellent communication skills with professional colleagues
– Demonstrable skill with a scientific computing language (e.g., R, MATLAB, or Python) and with data science applications

Preferred Qualifications
– Experience with data management, including spatial data
– Knowledge of coral reef biology, ecology, or oceanography
– Experience with computer clusters and scientific computing
– Start date in summer 2017
– Experience on the Meso-American Reef or in Fiji or Indonesia

To apply, please please send a cover letter that describes your interest in the position, a curriculum vitae, and the contact information for three references to Malin Pinsky (malin.pinsky@rutgers.edu). Please combine all components of the application into a single file, and include “CORAL tech position” in the subject line. Review of applications will begin on April 14, 2017 and continue until the position is filled.

This is a full-time position, initially appointed for a period of 12 months at an annual salary of $30,860-$35,000 (depending on qualifications), plus health insurance, retirement contributions, and other benefits. The position can be extended for at least one year depending on performance.

More information about the Pinsky lab can be found at http://pinsky.marine.rutgers.edu. Please contact Malin Pinsky (malin.pinsky@rutgers.edu) if you have any questions.

Putting endangered wildlife in a corner

Photo by Aziz Saltik (flickr)

Our new paper on extinction risk in marine and terrestrial species is out today in PNAS, “Range contraction enables harvesting to extinction” [free preprint here]. Led by Matthew Burgess at UCSB, the research shows that shrinking distributions puts many animals at further risk from extinction as their abundance decline. While harvesters (fishers or hunters) are typically expected to stop harvesting when a species becomes rare and the costs of harvest become too high, contraction of a species into dense clusters can keep harvesting profitable, even at very low abundance. Examples of species with these contractions include Bengal tigers, Asian elephants, and bluefin tunas.

News coverage: