We’re in Leyte

Field season #2 on our NSF RAPID grant to study coral reef ecosystem recovery from Typhoon Haiyan in Leyte, Philippines. We’re continuing benthic cover, fish visual surveys, and invertebrate surveys, but our main focus is on clownfish metapopulation dynamics and identifying the origin of recolonizing individuals (using genetic tags as natural “license plates” to identify source locations). Here’s a photo from our first full day of diving, walking down the road on the campus of the Visayas State University with our dive gear in the amazing “pot pot”. From left to right: Gerry Sucano (field assistant extraordinaire), Michelle Stuart, Patrick Flanagan, and Jennifer Hoey. Visayas State University

News from Leyte, Philippines

After a long day of diving in Tinag-an
After a long day of diving in Tinag-an

Pinsky Lab Phillipines is closing down after a great summer season! We (Michelle and field assistant Gerry Sucano) collected 540 clownfish samples and performed fish and coral transects on 600 m of reef off the western coast of Leyte.  While damage from Typhoon Yolanda (known as Typhoon Hayan in the U.S.) is still evident both on land and on the reef, there are still breathtaking stretches of coral habitat that are home to a diverse array of fish and invertebrates. We’ll be coming back here often over the coming years to observe the coral reef recovery, and in particular to understand how the dispersal of baby clownfish contributes to the recovery of their populations.

Sampling clownfish has its humorous moments, and it was especially fun to watch clownfish hide from our field assistant and clownfish wrangler extraordinaire, Gerry.  They would hide behind rocks and peek out at him from around corners. They would zip off to a neighboring anemone, and three or four would get together and watch him, swimming to face each other and then him in what seemed to be an animated conversation about the giant “fish” with bubbles coming out of its mouth.

Michelle at work watching clownfish.
Michelle at work watching clownfish.

The area of the Philippines where we work is a fascinating amalgamation of “primitive” with modern technology.  People live in thatch roofed huts and yet watch episodes of Game of Thrones on tablets. They use modern industrial materials to manufacture “off the grid” solutions, and the natural world is never far away. Even in our air conditioned hotel rooms, part of the wall was made of screen to allow air to move in and out (irony, anyone?). Being in a completely closed space started to feel odd, though the New Jersey winter will surely dispel that notion in due time. Meanwhile, it has been wonderful to enjoy living in this tiny piece of paradise.

Overfished species have lower genetic diversity

Photo by Winky (Flickr)
Photo by Winky (Flickr)

Genetic diversity is the raw material for evolution, and it allows species to adapt to changing environmental conditions. But can fisheries cause species to lose genetic diversity? In our meta-analysis just out this week in Molecular Ecology (OnlineEarly), we find strong evidence that the answer is yes. Previously, studies on individual populations have had somewhat ambiguous results: some studies found an effect, others did not. Our finding provides more evidence that the evolutionary impacts of overharvest are important for fisheries management, and may explain why some heavily overfished populations (e.g., Newfoundland cod) have had such a hard time recovering.