Overfishing of Atlantic Cod Likely Did Not Cause Genetic Changes: Pinsky et al. paper out in PNAS

This article was adapted from Todd Bates’ press release.

Atlantic cod
Bottom-dwelling fish such as Atlantic cod are often found near structures such as
shipwrecks. Photo: NOAA

Overfishing likely did not cause the Atlantic cod, an iconic species, to evolve genetically and mature earlier, according to a study led by Drs. Malin Pinsky and Bastiaan Star.

“Evolution has been used in part as an excuse for why cod and other species have not recovered from overfishing,” said Malin. “Our findings suggest instead that more attention to reducing fishing and addressing other environmental changes, including climate change, will be important for allowing recovery. We can’t use evolution as a scapegoat for avoiding the hard work that would allow cod to recover.”

The study, which focuses on Atlantic cod (Gadus morhua) off Newfoundland in Canada and off Norway, appears in the journal Proceedings of the National Academy of Sciences.

Atlantic cod range
Atlantic cod habitat includes both sides of the north Atlantic Ocean and beyond. Image: NOAA

Many debates over the last few decades have centered on whether cod have evolved in response to fisheries, a phenomenon known as fisheries-induced evolution. Cod now mature at a much earlier age, for example. The concern has been that if the fish have evolved, they may not be able to recover even if fishing is reduced, according to Pinsky.

Cod populations with late-maturing individuals can produce more offspring and more effectively avoid predators, he said. They are also better protected against climate variability.

Both theory and experiments suggest that fishing can lead to an earlier maturation age. But prior to the new study, no one had tried to sequence whole genomes from before intensive fishing to determine whether evolution had occurred. So, this team sequenced cod earbones and scales from 1907 in Norway, 1940 in Canada and modern cod from the same populations. The northern Canadian population of cod collapsed from overfishing in the early 1990s, while the northeast Arctic population near Norway faced high fishing rates but smaller declines.

The team found no major losses in genetic diversity and no major changes that suggested intensive fishing induced evolution, suggesting that we focus on managing for more direct threats (e.g., overfishing, environmental change) than for evolution.

This study prompts future investigations to see if other species, especially those with shorter lifespans (in contrast to cod), do or don’t show signs of evolution.

Scientists at the University of Oslo, Fisheries and Oceans Canada, Institute of Marine Research (Norway), University of Basel and University of Zurich contributed to the study.

Read additional coverage by Science Magazine here!

Read the original press release here!

Pinsky Lab reviews “Ocean Recovery: A Sustainable Future for Global Fisheries?” by Ray & Ulrike Hilborn

Zoë Kitchel, PhD Candidate, led a group of Pinsky Lab members (Jeewantha Bandara, Jaelyn Bos, René Clark, Dan Forrest, and Malin Pinsky) in reviewing Ocean Recovery: a Sustainable Future for Global Fisheries? by Ray and Ulrike Hilborn, available online early in Fisheries. The review mentions that the book serves as a needed contrast to the many doom-and-gloom stories and headlines of impending fisheries collapse by highlighting where fisheries are working well, but doesn’t fully expound the challenges to achieving and maintaining sustainable fisheries (e.g., climate change).

Read the full review here in Fisheries!

Deadly White-Nose Syndrome Changed Genes in Surviving Bats: Gignoux-Wolfsohn et al. paper out in Molecular Ecology

A little brown bat that survived white-nose syndrome. Photo: Sarah Gignoux-Wolfsohn

This post is adapted from Todd Bates‘ article in Rutgers Today.

Former Pinsky Lab Post-doc, Dr. Sarah Gignoux-Wolfsohn led a study in Molecular Ecology which uncovered the genetic differences between bats killed by white-nose syndrome and bats that survived. She was supported by a team of co-authors from Rutgers (Dr. Malin Pinsky, Dr. Kathleen Kerwin, and Dr. Brooke Maslo), the NY Department of Environmental Conservation, the NJ Department of Enviornmental Protection, the Vermont Fish and Wildlife Department, and the University of Tennessee. Their results suggest that survivors pass on traits for resistance to the fungal disease causing rapid evolution in exposed bat populations.

White-nose syndrome has killed millions of bats in North America since 2006, following its introduction from Europe. The syndrome, caused by the fungal pathogen Pseudogymnoascus destructans, is arguably the most catastrophic wildlife disease in history. It has led to unprecedented declines in many North American bat species, including the little brown bat (Myotis lucifugus).

“Our finding that little brown bat populations have evolved, which could be why they survived, has large implications for management of bat populations going forward,” said lead author Sarah Gignoux-Wolfsohn, a former postdoctoral associate at Rutgers University–New Brunswick now at the Smithsonian Environmental Research Center in Maryland. “Management decisions, such as whether to treat for white-nose syndrome or protect populations from other detrimental factors, can be informed by knowing which bats are genetically resistant to the disease.”

“The deployment of vaccines or treatments for the fungus may be most needed in populations with few disease-resistant individuals,” said Gignoux-Wolfsohn, who led the study – published in the journal Molecular Ecology – while at Rutgers. “Our study also has implications for other diseases that cause mass mortality. While rapid evolution in response to these diseases is often difficult to detect, our study suggests it may be more common than previously thought.”

The team sequenced bat genomes from three hibernating colonies in abandoned mines in New York, New Jersey and Vermont to determine whether little brown bats evolved as a result of the disease. They compared the genomes of bats killed by white-nose syndrome to survivors in recovering populations to identify genetic differences that may be responsible for survival.

The bats’ evolution appears to have particularly affected genes associated with weight gain before hibernation and behavior during hibernation. Rapid evolution may have allowed the remaining bats to keep hibernating and survive infection that killed off millions of other bats.

“Evolution is often thought of as a process that happened long ago,” Gignoux-Wolfsohn said. “We have found that it has also been happening right in our backyards and barns over the last decade.”

This group is now conducting a similar study in Indiana bats (Myotis sodalis). While also affected by white-nose syndrome, this species has experienced lesser declines than little brown bats.

Read the article in Molecular Ecology.

Read additional news coverage in Rutgers Today and Yahoo! News.

Planning Ahead Protects Fish and Fisheries: Pinsky et al. paper out in Science Advances

Effective planning for climate change helps avoid conflicts over ocean uses

[From press release by Todd Bates]

Conservation of fish and other marine life migrating from warming ocean waters will be more effective and also protect commercial fisheries if plans are made now to cope with climate change, according to a study Malin led in the journal Science Advances in collaboration with Lauren Rogers (Alaska Fisheries Science Center), former postdoc Jim Morley (now East Carolina University), and Thomas Frölicher (University of Bern).

The project focused on costs and benefits of planning ahead for the impacts of climate change on marine species distributions. We simulated the ocean planning process in the United States and Canada for conservation zones, fishing zones and wind and wave energy development zones. We then looked at nearly 12,000 different projections for where 736 species around North America will move during the rest of this century. We also looked at potential tradeoffs between meeting conservation and sustainable fishing goals now versus in 80 years.

We were worried that planning ahead would require setting aside a lot more of the ocean for conservation or for fishing, but we found that was not the case. Instead, fishing and conservation areas can be set up like hopscotch boxes so fish and other animals can shift from one box into another as they respond to climate change. We found that simple changes to ocean plans can make them much more robust to future changes. In other words, planning ahead can help society avoid conflicts.

Take home message: while climate change will severely disrupt many human activities and complete climate-proofing is impossible, proactively planning for long-term ocean change across a wide range of sectors is likely to provide substantial benefits.

Read the paper here in Science Advances.

Working Group Awarded Funding from RCN-ECS on Genomic Analysis of Evolution!

RCN Evolution in Changing Seas Logo

A group of graduate students and post-docs led by René Clark were awarded $10,000 from the Research Coordinated Network for Evolution in Changing Seas (RCN-ECS) to start a new working group reviewing the literature on genomic analysis of past and present specimens to quantify evolution through time. The group includes members from five universities: Rutgers (René Clark, Katrina Catalano, Brendan Reid, Kyra Fitz, Malin Pinsky), Alabama (Anthony Snead), Old Dominion (Eric Garcia, John Whalen), Michigan State (Kyle Jaynes), and UC Santa Cruz (Allyson Salazar Sawkins).

The group will review the literature to understand and synthesize the effects of methodology on the ability to detect contemporary evolutionary changes across taxa and habitats. After evaluating the literature on temporal genomic methodology, the group will formulate a decision framework to help guide the design of future studies. They hope to accelerate the use of temporal genomics in understanding evolutionary response to change across systems, taxa, and time.

Quantifying dispersal variability among nearshore marine populations: Katrina Catalano et al. paper out in Molecular Ecology!

yellowtail clownfish (Amphiprion clarkii) in the field!

Ph.D. Candidate, Katrina Catalano, and several Pinsky Lab co-authors published a paper in Molecular Ecology exploring the larval dispersal of a coral reef fish, the yellowtail clownfish (Amphiprion clarkii). They processed genetic samples from these fish along 30 km of coastline consisting of 19 reef patches in seven years (2012–2018) and monsoon seasons to determine dispersal patterns. They found that the distance of dispersal of each fish subpopulation in their study varied significantly among years and seasons, but not in direction of dispersal (northward, southward, or self-recruiting). The amount of dispersal variation observed in this study is comparable to variation among species, indicating that interannual and seasonal variation likely play a significant role in determining metapopulation dynamics.

Check out the article here!

Read the Rutgers press release here!

Additional press coverage from Yahoo! News, Daily Hunt, and The Hawk

Jeewantha (virtually) attends AFS 2020!

Jeewantha Bandara, a Pinsky Lab graduate student and Fulbright Scholar, attended the virtual annual meeting of the American Fisheries Society from September 14th to the 25th. He presented a poster titled “Use of Dissolved Oxygen, Salinity and Zooplankton Concentration to Determine Black Sea Bass (Centropristis striata) Habitat in North East Atlantic”. Jeewantha sought to determine which underlying environmental variables determine the distribution of Black Sea Bass. He used a two-stage GAM to explore the predictive power of a range of environmental variables on presence/absence and abundance of Black Sea Bass. He found that a model including salinity, zooplankton, and temperature best predicted the distribution of Black Sea Bass.

Click the links below to download the poster, and poster presentation video!

Welcoming Three New Lab Members!

The Pinsky Lab is pleased to welcome two new graduate students, Jaelyn Bos & Kyra Fitz, and a new Post-doc, Brendan Reid.

Kyra is joining the lab as a 1st year Ph.D. student in the Ecology and Evolution program. She has a B.S. in Marine Biology from the University of California, Santa Cruz. She has studied the impacts of environmental change on a variety of species including corals, elephant seals, sea lions, sea turtles, and larval fish. Her research interests include population genomics, marine conservation biology, and spatial ecology. In her free time she enjoys playing tennis, swimming, cooking, and taking her dog, Lucy, to parks.

Jaelyn is also joining the lab as a Ph.D. student in the Ecology and Evolution program. She is from Maryland, and graduated from University of Maryland, Baltimore County in 2017 with bachelors’ degrees in environmental science and biology. From 2017 to 2019, she served with the Peace Corps in Mozambique, teaching high school biology. She’s interested in coral reefs, conservation, and ecosystem resilience, particularly in East Africa. She also enjoys hiking, running, and hanging out with friends and family (from a distance).

Brendan grew up in New Jersey and is happy to be back working for the Garden State! He received his Masters from Columbia University and his PhD from the University of Wisconsin-Madison, and post-PhD he has worked at the American Museum of Natural History and at Michigan State’s Kellogg Biological Station. He is interested in gene flow and the demographics of species and communities, and his past work has used genetics to understand these processes in a wide variety of taxa (crustaceans, sloths, marine and freshwater turtles, and fish). Brendan currently lives with his girlfriend and two cats in New York City and he enjoys hiking, reading, and music.

Characterizing uncertainty in climate impact projections: Morley et al. paper out in ICES JoMS

Ensemble mean projections across 18 Earth system models and 6 niche models for the RCP 8.5 scenario for Pacific halibut (a, b), Pacific ocean perch (c, d), summer flounder (e, f), and American lobster (g, h). For each species, the left panel shows projected suitable habitat for the initial time period of 2007–2020, and the intensity of the blue represents habitat suitability while grey represents areas of the projection grid that are not suitable. The right panels show projected change in habitat suitability between the 2081–2100 time period and 2007–2020. For the right panels, red represents a decline in habitat suitability, blue represents increases in habitat suitability, and grey represents areas of no change; increasing intensity of blue (red) represents a proportionally greater increase (decrease) in habitat suitability.

Former Pinsky Lab Post-doc, Dr. Jim Morley, collaborator, Dr. Thomas Fro¨licher, and Dr. Malin Pinsky assessed and quantified the uncertainty in climate impact projections in their new paper out in ICES Journal of Marine Science. Using a case study approach, the team conducted 8964 unique projections for shifts in suitable habitat of seven important marine species occurring on the North American continental shelf, including American Lobster, Pacific Halibut, Pacific Ocean Perch, and Summer Flounder. They found that projection uncertainty arose from Earth system models (ESMs), and the niche modelling approach used to represent species distributions for all species, but variation associated with the parameter values in niche models was insignificant. Greenhouse gas emissions scenario contributed to uncertainty for projections at the century scale. The characteristics of projection uncertainty differed among species and also varied spatially, which underscores the need for improved multi-model approaches with a suite of ESMs and niche models forming the basis for uncertainty around projected impacts. Ensemble projections show the potential for major shifts in future distributions. Therefore, rigorous future projections are important for informing climate adaptation efforts.

Read the full article here.