McLean et al. study on shifts in thermal affinity of marine communities is available in the November 8 issue of Current Biology.

Maps showing the rate of change in SST and CTI along with differences in the strength of the underlying processes. A and B: Rate of change in SST (A) and CTI (B) across the 558 grid cells for the period 1990– 2015. C and D: Differences in the strength of tropicalization and deborealization in grid cells where CTI increased (C), and differences in the strength of borealization and detropicalization in grid cells where CTI decreased (D).

Matthew McLean collaborated with nine other researchers across Europe and North America, including Malin Pinsky, to coauthor this study on community change in marine environments. Their report appears in the November 8 issue of Current Biology. Although past studies have documented extensive shifts in community temperature index (CTI), this study uniquely decomposes CTI into four underlying processes at a multi-continental scale (tropicalization—increasing abundance of warm-affinity species; deborealization—decreasing abundance of cold-affinity speciesd; borealization—increasing abundance of cold-affinity species; detropicalization—decreasing abundance of warm-affinity species). Using long-term monitoring of marine fishes across the Northern Hemisphere, McLean et al. show that one-third of increases in mean thermal affinity were primarily due to decreases in cold-affinity species. Cold-affinity decreases were stronger closer to human population centers; warm-affinity increases were stronger in warmer areas. These findings will help in anticipating future changes in biodiversity under climate change and implementing adapted management strategies.

Clark et al. paper on spatially divergent selection in clownfish out in Proc. R. Soc. B!

yellowtail clownfish in the Philippines, 2014 – Pinsky Lab

René Clark (Ph.D. candidate) and co-authors from the Pinsky Lab, Montclair State University, Columbia University, UCLA, Shiga University (Japan), and Visayas State University (Philippines) published a paper in Proceedings of the Royal Society B investigating the relationship between selection, gene flow and genetic drift across the species range of Amphiprion clarkii (the yellowtail clownfish). Using RNAseq data from populations near the range center (Indonesia & the Philippines) and the northern range margin (Japan), they found signs of local adaptation to cold temperatures at the range edge, despite strong genetic drift and gene flow from lower latitudes. Many of the targets of selection were found in genes involved in acclimation to cold stress, including protein turnover, metabolism, cell structure, and cell death, and may point to an important link between plastic and evolutionary responses involved in thermal adaptation.

Read the full article here!

Zoë Kitchel and Doug Zemeckis publish climate change and NJ fisheries bulletin!

Figure 3.
Shifts in the center of fall distribution of black sea bass (upper) and summer flounder (lower) along the northeast U.S. continental shelf from the 1970s through 2018. Data are based on the NOAA Northeast Fisheries Science Center’s fall bottom trawl surveys. Source: oceanadapt.rutgers.edu.

Pinsky Lab PhD candidate, Zoë Kitchel, and Rutgers Cooperative Extension Agent, Doug Zemeckis, authored a bulletin in Rutgers’ Cooperative Extension Bulletin on the impacts of climate change on New Jersey’s marine fisheries. The bulletin breaks down this issue for a general audience and packs the information into ~3 pages. With a quick read, you will become acquainted with climate change, its causes, effects on the ocean, and its impacts on marine life and fisheries.

Read the bulletin here!

Pinsky Lab reviews “Ocean Recovery: A Sustainable Future for Global Fisheries?” by Ray & Ulrike Hilborn

Zoë Kitchel, PhD Candidate, led a group of Pinsky Lab members (Jeewantha Bandara, Jaelyn Bos, René Clark, Dan Forrest, and Malin Pinsky) in reviewing Ocean Recovery: a Sustainable Future for Global Fisheries? by Ray and Ulrike Hilborn, available online early in Fisheries. The review mentions that the book serves as a needed contrast to the many doom-and-gloom stories and headlines of impending fisheries collapse by highlighting where fisheries are working well, but doesn’t fully expound the challenges to achieving and maintaining sustainable fisheries (e.g., climate change).

Read the full review here in Fisheries!

Deadly White-Nose Syndrome Changed Genes in Surviving Bats: Gignoux-Wolfsohn et al. paper out in Molecular Ecology

A little brown bat that survived white-nose syndrome. Photo: Sarah Gignoux-Wolfsohn

This post is adapted from Todd Bates‘ article in Rutgers Today.

Former Pinsky Lab Post-doc, Dr. Sarah Gignoux-Wolfsohn led a study in Molecular Ecology which uncovered the genetic differences between bats killed by white-nose syndrome and bats that survived. She was supported by a team of co-authors from Rutgers (Dr. Malin Pinsky, Dr. Kathleen Kerwin, and Dr. Brooke Maslo), the NY Department of Environmental Conservation, the NJ Department of Enviornmental Protection, the Vermont Fish and Wildlife Department, and the University of Tennessee. Their results suggest that survivors pass on traits for resistance to the fungal disease causing rapid evolution in exposed bat populations.

White-nose syndrome has killed millions of bats in North America since 2006, following its introduction from Europe. The syndrome, caused by the fungal pathogen Pseudogymnoascus destructans, is arguably the most catastrophic wildlife disease in history. It has led to unprecedented declines in many North American bat species, including the little brown bat (Myotis lucifugus).

“Our finding that little brown bat populations have evolved, which could be why they survived, has large implications for management of bat populations going forward,” said lead author Sarah Gignoux-Wolfsohn, a former postdoctoral associate at Rutgers University–New Brunswick now at the Smithsonian Environmental Research Center in Maryland. “Management decisions, such as whether to treat for white-nose syndrome or protect populations from other detrimental factors, can be informed by knowing which bats are genetically resistant to the disease.”

“The deployment of vaccines or treatments for the fungus may be most needed in populations with few disease-resistant individuals,” said Gignoux-Wolfsohn, who led the study – published in the journal Molecular Ecology – while at Rutgers. “Our study also has implications for other diseases that cause mass mortality. While rapid evolution in response to these diseases is often difficult to detect, our study suggests it may be more common than previously thought.”

The team sequenced bat genomes from three hibernating colonies in abandoned mines in New York, New Jersey and Vermont to determine whether little brown bats evolved as a result of the disease. They compared the genomes of bats killed by white-nose syndrome to survivors in recovering populations to identify genetic differences that may be responsible for survival.

The bats’ evolution appears to have particularly affected genes associated with weight gain before hibernation and behavior during hibernation. Rapid evolution may have allowed the remaining bats to keep hibernating and survive infection that killed off millions of other bats.

“Evolution is often thought of as a process that happened long ago,” Gignoux-Wolfsohn said. “We have found that it has also been happening right in our backyards and barns over the last decade.”

This group is now conducting a similar study in Indiana bats (Myotis sodalis). While also affected by white-nose syndrome, this species has experienced lesser declines than little brown bats.

Read the article in Molecular Ecology.

Read additional news coverage in Rutgers Today and Yahoo! News.

Planning Ahead Protects Fish and Fisheries: Pinsky et al. paper out in Science Advances

Effective planning for climate change helps avoid conflicts over ocean uses

[From press release by Todd Bates]

Conservation of fish and other marine life migrating from warming ocean waters will be more effective and also protect commercial fisheries if plans are made now to cope with climate change, according to a study Malin led in the journal Science Advances in collaboration with Lauren Rogers (Alaska Fisheries Science Center), former postdoc Jim Morley (now East Carolina University), and Thomas Frölicher (University of Bern).

The project focused on costs and benefits of planning ahead for the impacts of climate change on marine species distributions. We simulated the ocean planning process in the United States and Canada for conservation zones, fishing zones and wind and wave energy development zones. We then looked at nearly 12,000 different projections for where 736 species around North America will move during the rest of this century. We also looked at potential tradeoffs between meeting conservation and sustainable fishing goals now versus in 80 years.

We were worried that planning ahead would require setting aside a lot more of the ocean for conservation or for fishing, but we found that was not the case. Instead, fishing and conservation areas can be set up like hopscotch boxes so fish and other animals can shift from one box into another as they respond to climate change. We found that simple changes to ocean plans can make them much more robust to future changes. In other words, planning ahead can help society avoid conflicts.

Take home message: while climate change will severely disrupt many human activities and complete climate-proofing is impossible, proactively planning for long-term ocean change across a wide range of sectors is likely to provide substantial benefits.

Read the paper here in Science Advances.

Quantifying dispersal variability among nearshore marine populations: Katrina Catalano et al. paper out in Molecular Ecology!

yellowtail clownfish (Amphiprion clarkii) in the field!

Ph.D. Candidate, Katrina Catalano, and several Pinsky Lab co-authors published a paper in Molecular Ecology exploring the larval dispersal of a coral reef fish, the yellowtail clownfish (Amphiprion clarkii). They processed genetic samples from these fish along 30 km of coastline consisting of 19 reef patches in seven years (2012–2018) and monsoon seasons to determine dispersal patterns. They found that the distance of dispersal of each fish subpopulation in their study varied significantly among years and seasons, but not in direction of dispersal (northward, southward, or self-recruiting). The amount of dispersal variation observed in this study is comparable to variation among species, indicating that interannual and seasonal variation likely play a significant role in determining metapopulation dynamics.

Check out the article here!

Read the Rutgers press release here!

Additional press coverage from Yahoo! News, Daily Hunt, and The Hawk

Jennifer Hoey defends her PhD!

Hoey-Pic-2

Dr. Jennifer Hoey successfully defended her PhD dissertation, “Adaptation and evolutionary potential in light of anthropogenic stressors in the ocean” on May 11th, 2020! It was by videoconference, with audience members calling in from literally all over the world. Jennifer’s research on evolutionary patterns in summer flounder has already been published in two papers, Hoey et al. 2018 Evolutionary Applications and Hoey et al. 2020 Molecular Ecology, with a third on the way. Jennifer has also done incredible science outreach work as part of the Science Partnership Committee within the National Network for Ocean and Climate Change Interpretation (NNOCCI). She has become a vital part of not only our lab, but the entire Rutgers Ecology & Evolution community through her work with the graduate program, outdoor activities, dining, art and more. She will be sorely missed as she moves on to a postdoc at UC Santa Cruz. The biggest congratulations and thank you to Jennifer on behalf of the entire Pinsky lab and DEENR!

Thermal affinities and temperature gradients explain how warming changes ocean community composition: Burrows et al. 2019, Nature Climate Change

Figure 1, c-f (Burrows et al. 2019) Thermal characteristics in simulated pools of species varying in thermal diversity (high: c and d; low: e and f) and species’ thermal ranges [STR] (narrow: c and e; wide: d and f), showing subsets forming communities at a mean annual sea temperature of 15 °C.

A new paper published in Nature Climate Change by Dr. Michael Burrows et al., with contributions from Dr. Ryan Batt (former Pinsky Lab postdoc) and Dr. Malin Pinsky, used 29 years of fish and plankton survey data to assess how warming is changing marine communities’ composition and structure. They found that “warm-water species are rapidly increasing and cold-water species are decreasing” as ocean waters warm. Informed by species’ incidence, and changes in sea surface temperature (SST), the team created measures of species’ thermal affinities, community composition, and other summary metrics. They used these to measure community-level change in thermal affinity and composition.

Regions with relatively stable temperatures (e.g. the Northeast Pacific and Gulf of Mexico) showed little change in structure, while areas that warmed (e.g. the North Atlantic) shifted strongly towards warm-water species dominance. They also found that communities whose species pools had diverse thermal affinities and a narrower range of thermal tolerance showed greater sensitivity to change.

Next, they found that communities in regions with strong temperature depth gradients changed less than expected. In these regions, rather than moving horizontally through the water, species can instead move deeper to maintain their preferred temperature.

They concluded that this evidence strongly supports temperature as a fundamental driver of change in marine systems, and that metrics based on species’ thermal affinities are useful tools to predict and provide prognoses for community dominance shifts.

Check out press coverage of the article below:

Changes in both size and distribution of fish stocks on the US West Coast drive variation in availability to fisheries: Selden et al. article in ICES JoMS

Block seine fishing. Image courtesy of WDFW.
Commercial fishing boat hauling up a block-seine trawl. Image from Washington Department of Fish and Wildlife.

Changes in the total catch of a species do not always correspond to changes in total biomass or changes in the species’ distribution alone. This discrepancy drove Dr. Rebecca Selden, former Pinsky lab post-doc and current Assistant Professor at Wesleyan College, and colleagues to seek a greater understanding of the forces driving both fish stock availability and catch at US West Coast ports in their recently published article.

The team first sought to couple changes in a species’ biomass with the species’ distribution to explain the heterogeneity in stock availability experienced by fisheries across different latitudes. They measured the change in distribution and biomass of five commercial target species (dover sole, thornyheads, sablefish, lingcod, and petrale sole), and found that the timing and magnitude of stock declines and recoveries are not experienced uniformly along the coast when they coincide with shifts in species distributions.

Second, they integrated information on distances travelled by fishers with estimates of availability along the coast to generate port-specific indices of availability. They found that additional factors, like greater vessel mobility and larger areal extent of fish habitat, affect availability, and may work to counteract or augment the effects of changing fish biomass and distribution.

Lastly, they found that higher stock availability was not consistently associated with higher catch per ticket. Because fish landings were not consistently related to stock availability, Selden et al. suggest that social, economic, and regulatory factors likely constrain or facilitate the capacity for fishers to adapt to changes in fish availability.