Malin Pinsky recognized by the American Association for the Advancement of Science

With the announcement of the American Association for the Advancement of Science’s (AAAS) 2022 Fellows, Dr. Malin Pinsky was honored for his significant contributions to the field of marine biology. The AAAS is widely regarded as a multidisciplinary scientific society focused on the advancement of scientific discoveries.

Further information discussing Dr. Malin Pinsky’s contributions predicting the impacts of climate change can be found here. As well, a comprehensive list of AAAS’s 2022 Fellows can be found here.

FutureBlue website launched!

We are very excited to announce the launch of our project website: futureblue.net. FutureBlue is an online database and mapping platform designed to make projections of future ocean conditions (species distributions, wind speed, oceanography, etc.) available and useful for the broadest array of stakeholders possible. The project is led by Rutgers, UCONN, and The Nature Conservancy, along with a large interdisciplinary team from academic, governmental, and non-profit organizations, including world experts in climate science, social science, oceanography, marine ecology and management, and online data portal development. FutureBlue originated as part of the National Science Foundation (NSF) Convergence Accelerator program in 2021, and we are currently in the process of securing funding for Phase II to expand and improve the tool.

New papers highlighting ecoevolutionary adaptation to climate change

Two new papers from the lab discuss how best to understand, and to mitigate, the effects of climate change by applying ecoevolutionary theory.

The first, published in Trends in Ecology and Evolution (doi: 10.1016/j.tree.2022.04.011) proposes that dominant ecoevolutionary processes for coping with climate change differ among terrestrial, freshwater, and marine taxa, but that a unified framework, spanning realms, is needed to fully understand them. The review was authored by Malin and coauthors Lise Comte (Illinois State U.) and Dov Sax (Brown U.).

The second, published in Ecological Applications (doi: 10.1002/eap.2650), investigated the merits of two restoration strategies for corals in a changing ocean: ‘demographic restoration’, in which coral is grown elsewhere and transplanted to a site; and ‘assisted evolution’, in which tolerant genotypes are transplanted. This paper, led by Lukas DeFilippo (NOAA) and coauthored by several current and former Pinsky lab members, used an ecoevolutionary simulation model to tackle the question. The model revealed that realistic levels of ‘demographic restoration’ offered little benefit, while transplanting thermally resistant corals helped, but only if maintained for a century. The study concluded that restoration approaches focused on building genetic variation would likely work better by allowing corals to naturally adapt to warming temperatures over time.

New NSF project to develop climate impact projections for the northeast US continental shelf!

With $750,000 in funding from the National Science Foundation, we’re excited to be starting a new partnership with The Nature Conservancy, University of Connecticut, University of Massachusetts, the Responsible Offshore Science Alliance (ROSA), University of Wisconsin, Rutgers Equal Opportunity Fund, the Pacific Northwest College of Art and the National Oceanic and Atmospheric Administration! The focus is on climate impacts ot fisheries, wind energy development, and conservation. More details here https://sebsnjaesnews.rutgers.edu/2021/09/national-science-foundation-awards-rutgers-a-750000-convergence-accelerator-grant/

Alternative stable states in conservation behavior in PNAS

Ed Tekwa (postdoc in the lab) led a study just out in PNAS, “Path-dependent institutions drive alternative stable states in conservation.” 

A commercial fishing boat in Reykjavik, Iceland.

We hear almost every day in the news about environmental disasters, but the world is also full of many environmental success stories. Why do we succeed at conservation some of the time, but fail other times? In our paper, we studied people’s decisions about whether to conserve or to over-harvest a renewable resource like fish or timber. Surprisingly, we found that people often get trapped by their past decisions. If they start out over-harvesting, they tend to continue over-harvesting. But the opposite is also true: once people start conserving, this behavior is also self-perpetuating. We built a mathematical model for this behavior, and showed that it explains global patterns in fisheries decisions better than any previous theory.  Our results challenge the conventional expectation that collapse of fast-growing resources is unlikely, but also offer hope that conservation is much easier to continue once we start.


Putting endangered wildlife in a corner

Photo by Aziz Saltik (flickr)

Our new paper on extinction risk in marine and terrestrial species is out today in PNAS, “Range contraction enables harvesting to extinction” [free preprint here]. Led by Matthew Burgess at UCSB, the research shows that shrinking distributions puts many animals at further risk from extinction as their abundance decline. While harvesters (fishers or hunters) are typically expected to stop harvesting when a species becomes rare and the costs of harvest become too high, contraction of a species into dense clusters can keep harvesting profitable, even at very low abundance. Examples of species with these contractions include Bengal tigers, Asian elephants, and bluefin tunas.

News coverage:

New paper: Who should pick the winners of climate change?

It is tempting to try to guess which species will be the winners of climate change, and which the losers. But our new paper in Trends in Ecology and Evolution suggests that we should avoid doing that when we design management and conservation measures. Instead, we propose harnessing the diversity and evolutionary capacity of the natural world as a climate adaptation strategy by designing “adaptation networks.” We focus on coral reefs as a particularly salient example.

Ed at the EcoSummit in Montpelier

tekwa_talk_slideEd was at the EcoSummit conference in Montpellier (Sept. 1) to present “Why do fisheries evolve different harvest rates?”.  The conference theme was Engineering Sustainability, but covered a wide range of sustainability topics. Also a nice chance to drink some wine and visit with Michel Loreau!