Lab members attend FishGlob: a worldwide assessment from scientific trawl surveys

This past week Alexa Fredston (Postdoctoral Researcher), Zoë Kitchel (Ph.D. Candidate), and Malin met with a group of international researchers as a part of the FishGlob project hosted by the Centre for the Synthesis and Analysis of Biodiversity based in Montpelier, France. The team, Zooming in from Brazil, Seattle, Connecticut, Nova Scotia, France, Vancouver, and beyond is working to better understand changes in species distributions and biodiversity in the ocean by collecting and combining over 70 bottom trawl surveys from across the world.

Alexa presented on a project examining the impacts of marine heat waves on fish biomass in North America and Europe. She has found that substantial decreases in biomass are only associated with the most intense heatwaves. Zoë presented on a project testing for spatial homogenization of fish communities across a diverse array of trawl surveys. While some regions are experiencing homogenization, likely a result of anthropogenic impacts on the ocean, a number of regions are experiencing differentiation, or no directional change in community composition over time.

This exciting collaboration will allow us to better understand range shift dynamics, especially of species crossing international borders and better shape strategies to manage these cross boundary species and future fish communities.

McLean et al. study on shifts in thermal affinity of marine communities is available in the November 8 issue of Current Biology.

Maps showing the rate of change in SST and CTI along with differences in the strength of the underlying processes. A and B: Rate of change in SST (A) and CTI (B) across the 558 grid cells for the period 1990– 2015. C and D: Differences in the strength of tropicalization and deborealization in grid cells where CTI increased (C), and differences in the strength of borealization and detropicalization in grid cells where CTI decreased (D).

Matthew McLean collaborated with nine other researchers across Europe and North America, including Malin Pinsky, to coauthor this study on community change in marine environments. Their report appears in the November 8 issue of Current Biology. Although past studies have documented extensive shifts in community temperature index (CTI), this study uniquely decomposes CTI into four underlying processes at a multi-continental scale (tropicalization—increasing abundance of warm-affinity species; deborealization—decreasing abundance of cold-affinity speciesd; borealization—increasing abundance of cold-affinity species; detropicalization—decreasing abundance of warm-affinity species). Using long-term monitoring of marine fishes across the Northern Hemisphere, McLean et al. show that one-third of increases in mean thermal affinity were primarily due to decreases in cold-affinity species. Cold-affinity decreases were stronger closer to human population centers; warm-affinity increases were stronger in warmer areas. These findings will help in anticipating future changes in biodiversity under climate change and implementing adapted management strategies.

Read full article here

Thermal affinities and temperature gradients explain how warming changes ocean community composition: Burrows et al. 2019, Nature Climate Change

Figure 1, c-f (Burrows et al. 2019) Thermal characteristics in simulated pools of species varying in thermal diversity (high: c and d; low: e and f) and species’ thermal ranges [STR] (narrow: c and e; wide: d and f), showing subsets forming communities at a mean annual sea temperature of 15 °C.

A new paper published in Nature Climate Change by Dr. Michael Burrows et al., with contributions from Dr. Ryan Batt (former Pinsky Lab postdoc) and Dr. Malin Pinsky, used 29 years of fish and plankton survey data to assess how warming is changing marine communities’ composition and structure. They found that “warm-water species are rapidly increasing and cold-water species are decreasing” as ocean waters warm. Informed by species’ incidence, and changes in sea surface temperature (SST), the team created measures of species’ thermal affinities, community composition, and other summary metrics. They used these to measure community-level change in thermal affinity and composition.

Regions with relatively stable temperatures (e.g. the Northeast Pacific and Gulf of Mexico) showed little change in structure, while areas that warmed (e.g. the North Atlantic) shifted strongly towards warm-water species dominance. They also found that communities whose species pools had diverse thermal affinities and a narrower range of thermal tolerance showed greater sensitivity to change.

Next, they found that communities in regions with strong temperature depth gradients changed less than expected. In these regions, rather than moving horizontally through the water, species can instead move deeper to maintain their preferred temperature.

They concluded that this evidence strongly supports temperature as a fundamental driver of change in marine systems, and that metrics based on species’ thermal affinities are useful tools to predict and provide prognoses for community dominance shifts.

Check out press coverage of the article below:

Communities respond within a year to temperature variation

Map of survey area with sub-regions colored by magnitude of long-term change in CTI in spring.

Patrick’s paper from his MS is now online early at Ecography! He studied temporal change in community composition across the Northeast US continental shelf and found that changes through time could be explained by species associations with bottom temperature. Measured as the Community Temperature Index (CTI), composition changed by about one third of a degree (°C) for every 1 °C increase in bottom temperature on average. Species have non-linear responses to changes in temperature, however, and these nonlinearities scaled up to a nonlinear relationship between composition and temperature.

Six presentations at ESA and AFS!

Lots of great presentations this month:

  • Jennifer presented 25 years of changes in population genetic patterns of summer flounder at the Ecological Society of America (ESA) meeting in Portland, OR
  • Sarah presented on genomic evidence for evolutionary rescue in little brown bats hit by white nose syndrome, also at ESA
  • Malin gave three talks: how ecology can help meet the UN sustainable development goals, how to teach about climate change (with Rebecca Jordan), and how climate change impacts in the ocean are different than those on land (all at ESA)
  • Becca talked about changing predator-prey interactions as a result of warming in the Northeast US at the American Fisheries Society (AFS) meeting in Tampa, FL
  • Jim presented a detailed projection of marine animal distributions in North America over the coming century (AFS)
  • Allison presented some of her Ph.D. work on eco-evolutionary dynamics in salmon (AFS)

Diversity protects predator-prey interactions

Cod are a less important predator as bottom temperatures (SBT) warm.

New paper just out online in Global Change Biology, led by postdoc Becca Selden: functional diversity among predatory fish helps protect ecosystems from the impacts of warming. Becca showed that warming has helped make Atlantic cod a much less important predator in the Northeast U.S., but other predators (spiny dogfish, hakes) have expanded to fill its role.

On a geeky note, what’s especially interesting is that these changes in predator-prey interactions with warming are occurring even though both predators and prey are shifting their distributions as the environment changes.

Cod photo by Joachim S. Müller.
Photo by Joachim S. Müller.

Species numbers going UP in the coastal ocean

Ryan just published a paper in Ecology Letters showing that the number of species in many parts of the coastal ocean is going up, not down as many would expect.  He spent the past few years trying to understand how marine biodiversity is changing, but his findings were initially so surprising that he doubted them.

Globally, biodiversity is going down. But because some species have started to live in more places, and different places, what happens globally isn’t what we see locally.

He studied decades of patterns in biodiversity around the North American coastline, and surprisingly, most of these regions show *increases* in the number of species present. At the same time, He found that organisms that were previously rare in these areas are becoming increasingly common.

The natural world is full of surprises.

New papers from the lab

Exciting news on the publication front:

  • Jim’s paper on rapid responses of marine animals to winter temperature variability is now out in Global Change Biology. He found strong variation in how animals responded to a warm winter (higher or lower abundance; or shift north vs. south), but the rate and direction of response was predictable from thermal affinity.
  • Ryan has been hard at work to understand long-term trends in species richness in marine ecosystems all around North America. The paper was just accepted in Ecology Letters! More on this later.
  • Jordan Holtswarth was an REU student in our lab last summer, and her paper on reproduction in clownfish is now in press at Bulletin of Marine Science!

Hiring a data science technician for coral reef research!

Data Science Technician

The Pinsky Lab in the Department of Ecology, Evolution, and Natural Resources is searching for an organized, enthusiastic, and skilled individual to work as a data science technician on a three-year project modeling the future of coral reefs and the potential for evolutionary rescue. The project is in collaboration with the Coral Reef Alliance, Dr. Daniel Schindler at the University of Washington, and other collaborators. The project is funded by the Gordon and Betty Moore Foundation.

The technician will assist the PI, a postdoc, and our collaborators by identifying, assembling, and synthesizing existing, region-specific data on coral reefs and their oceanography, ecological communities, population dynamics, evolutionary parameters, and climate in the Pacific and Caribbean. These data will contribute to regional and/or global models of coral adaptation and the potential for conservation over the coming centuries across realistically complex landscapes. Important questions to be studied include the relative role of ecological vs. evolutionary change in rapid coral adaptation, the interaction between oceanography and evolutionary processes, and the potential for conservation actions to facilitate rapid adaptation. Other duties will include assisting with data visualizations as well as project and lab logistics such as training students, preparing materials for grant reports and applications, maintaining a website, and organizing events.

The technician will be part of a dynamic research team with opportunities for professional development, presentations, co-authorship on scientific manuscripts, and collaboration with colleagues at Rutgers, U. Washington, the Coral Reef Alliance, and beyond. Rutgers offers many opportunities to interact with biologists, oceanographers, climate scientists, and other scholars in the School of Environmental and Biological Sciences, the Rutgers Climate Institute, the Institute for Earth, Ocean, and Atmospheric Sciences, and the many other institutions in the New York region.

Minimum Qualifications
– A bachelor’s degree in ecology & evolution, marine biology, oceanography, climate, or a related scientific field, or an equivalent combination of education and relevant experience
– Exceptional organizational and data management skills
– Strong ability to accomplish tasks independently
– Excellent communication skills with professional colleagues
– Demonstrable skill with a scientific computing language (e.g., R, MATLAB, or Python) and with data science applications

Preferred Qualifications
– Experience with data management, including spatial data
– Knowledge of coral reef biology, ecology, or oceanography
– Experience with computer clusters and scientific computing
– Start date in summer 2017
– Experience on the Meso-American Reef or in Fiji or Indonesia

To apply, please please send a cover letter that describes your interest in the position, a curriculum vitae, and the contact information for three references to Malin Pinsky ( Please combine all components of the application into a single file, and include “CORAL tech position” in the subject line. Review of applications will begin on April 14, 2017 and continue until the position is filled.

This is a full-time position, initially appointed for a period of 12 months at an annual salary of $30,860-$35,000 (depending on qualifications), plus health insurance, retirement contributions, and other benefits. The position can be extended for at least one year depending on performance.

More information about the Pinsky lab can be found at Please contact Malin Pinsky ( if you have any questions.