New papers highlighting ecoevolutionary adaptation to climate change

Two new papers from the lab discuss how best to understand, and to mitigate, the effects of climate change by applying ecoevolutionary theory.

The first, published in Trends in Ecology and Evolution (doi: 10.1016/j.tree.2022.04.011) proposes that dominant ecoevolutionary processes for coping with climate change differ among terrestrial, freshwater, and marine taxa, but that a unified framework, spanning realms, is needed to fully understand them. The review was authored by Malin and coauthors Lise Comte (Illinois State U.) and Dov Sax (Brown U.).

The second, published in Ecological Applications (doi: 10.1002/eap.2650), investigated the merits of two restoration strategies for corals in a changing ocean: ‘demographic restoration’, in which coral is grown elsewhere and transplanted to a site; and ‘assisted evolution’, in which tolerant genotypes are transplanted. This paper, led by Lukas DeFilippo (NOAA) and coauthored by several current and former Pinsky lab members, used an ecoevolutionary simulation model to tackle the question. The model revealed that realistic levels of ‘demographic restoration’ offered little benefit, while transplanting thermally resistant corals helped, but only if maintained for a century. The study concluded that restoration approaches focused on building genetic variation would likely work better by allowing corals to naturally adapt to warming temperatures over time.

Climate Change Hits Sea Creatures Hardest: Malin et al.’s new paper in Nature [edit: and the cover!]

Pinsky et al. 2019 makes the cover of Nature!

Malin and coauthors, Drs. Anna Eikeset, Doug McCauley, Jonathan Payne, and Jennifer Sunday, published a paper on April 24th, 2019 on the vulnerability of marine versus terrestrial ectotherms. While the vulnerability of marine and terrestrial fauna have each been studied in isolation, a direct comparison of marine and terrestrial organisms physiological sensitivity to warming has yet to occur.

The team used species’ thermal safety margin (the difference between the hottest temperature that an organism can safely tolerate, and its hottest hourly body temperature when in the coolest part of their environment) as a tool to directly compare ocean and land dwelling species. This metric approximates the amount of additional warming a species can tolerate. They calculated this metric for 88 marine and 299 terrestrial species, and found that marine species are more likely to live close to their upper thermal limit than terrestrial species. Terrestrial species also have greater access to thermal refugia (cooler places found within their habitat), such as shaded or subterranean areas. Both of these factors make marine organisms more sensitive to warming than their terrestrial counterparts.

Click here to read the full paper (free access here), and here to read the Rutgers press release.

Key figure from Pinsky et al. 2019

Additional Press Coverage: